

HST-3000

Ethernet Service Interface Module (SIM)

Key Features

METRethernet MEMBER

• Portable test set addresses the needs of of Layer 1 thru Layer 7 testing with IPv6 Capability

- Supports Electrical and Optical Ethernet testing in a single module
- Performs traffic generation up to interface line rate and supports automated RFC2544 at Layers 2 to 4 (Eth/IP/TCP/UDP)
- IPv6 option enables installation and troubleshooting of IPv6 networks
- Generates and analyzes traffic with various encapsulation schemes such as VLAN, VLAN Stacking (Q-in-Q), and MPLS
- Dual-port 'Thru Mode' configuration enables live traffic analysis
- PPPoE protocol support for emulation of data traffic in the last mile
- Simplified user interface facilitates ease-of-use and minimizes technicians' learning curves

Introducing next generation Ethernet/IP-based services over carrier-grade Metro Ethernet networks yields increases in both complexity and costs for service providers. These networks facilitate service aggregation and work in concert with different network infrastructures and tunneling technologies (VLANs, MAC-in-MAC, and VPLS/MPLS) that provide common Quality of Service (QoS), traffic engineering, redundancy, and scalability across the service infrastructure. The JDSU HST-3000, equipped with the Ethernet Service Interface Module (SIM) and mainframe's VoIP and IP Video options, addresses the broad requirements for 7-layer testing in a rugged, modular platform that is ideal for field use.

Carrier-grade Metro Ethernet networks are emerging as key components in business (VoIP, Disaster Recovery, Video Conferencing, etc.) and consumer (tripleplay) service delivery. Triple-play networks, which transmit voice, video, and data traffic, present a unique set of challenges. Service providers for these network environments are now responsible for delivering a service with the Quality of Experience (QoE) requirement, rather than delivering a Layer 2 or Layer 3 pipe.

These emerging networks pose requirements for the support of the IPv6 protocol, which addresses the limitations of IPv4 networks: insufficient address space for everything over IP, address prefix allocation, complexity of configuration, lack of data security, and lack of adequate QoS measurement. The HST-3000 IPv6 option supports the installation and troubleshooting of the next generation IPv6 networks in transition from IPv4 platforms.

The HST-3000 platform with the Ethernet SIM allows providers to equip their technicians to adequately install and troubleshoot next generation networks, while continuing to support their legacy services in a modular solution.

Summary Results * []
Press CONFIGURE button to configure test
Laver 2 Traffic Test Current: Layer 2 Traffic
1 - Layer 2 Traffic
3 - Layer 3 PING
4 - Layer 3 Traceroute
5-Layer 4 Traffic

Figure 1 Layer 2 Traffic Summary Results

1 - Test	Layer 2 Traffic
2 - Auto Negotiation	On
3 - Source Type	Def. 00:80:16:45:00:01
4 - Destination MAC	00:80:16:8C:01:60
5 - Tx Payload	Acterna
6 - Frame Length	512
7 - Encapsulation	Q-in-Q
8 - CVLAN	ID: 1 , Pri: 1
9 - SVLAN	ID:1 ,Pri:1 ,TPID:8100,D
0 - Load(%)	100
Settings 🔺 Summa	ary Save 🔺

Figure 2 Layer 2 Traffic Summary Setting

Product Features

Installation and Troubleshooting of Layer 2 and Layer 3 Services

To verify that service level agreements (SLAs) are met for Layer 2 offering, the HST-3000 Ethernet SIM allows technicians to generate Ethernet frames with various configurable parameters, such as bandwidth utilization, frame length, and frame payload. These frames can be generated with constant, ramp, or bursty traffic load settings to fully test the Ethernet (Layer 2) service.

Moreover, prior to testing SLAs for Layer 3 offerings, technicians may need to verify that the provisioned path in the network will carry IP traffic to its destination. The first step in verifying this end-to-end connectivity is to perform an IP Ping with the HST-3000 Ethernet SIM. If problems with establishing connectivity to the far end exist, users may want to verify the route between the source and destination host by running the Traceroute application.

Once the network connectivity is verified, the HST-3000 Ethernet SIM features the ability to transmit and receive IP packets with its built-in Layer 3 testing capabilities. These packets have a valid IP header, containing user-defined fields, such as TOS/DSCP prioritization, and source and destination IP address. Since dynamic addressing is supported, the source IP address can be assigned by a DHCP server, if necessary. Basic domain name service (DNS) testing can be performed to ensure that the DNS server is able to resolve the name to the appropriate address. In addition, traffic load settings can be configured for constant, ramp, and bursty traffic in order to simulate different network traffic conditions and to stress and analyze the performance of the link.

One-Button RFC2544 Automation

1500

9982

129

808

100.00

One press of a button enables technicians to run an automated test against customizable thresholds. RFC2544 represents a benchmarking methodology for performing the QoS measurements in a switched/routed network. The automated test ensures that the procedure is performed the same way every time, providing consistent and repeatable results, and offering a PDF report with graphical representation of the results.

995

100.000

No

No

1248

Figure 3 RFC2544 Latency (RTD) Test Results Report

Cable Diagnostics

On electrical Ethernet circuits, the HST-3000 can display the link speed, link status, cable status, MDI/MDI-X, and distance to fault with one press of a button. To verify connectivity on fiber lines, the HST-3000 Ethernet SIM reports the wavelength and level of the optical signal. These features allow technicians to quickly sectionalize physical layer problems.

Bi-Directional Monitoring/Thru Mode

The dual ports (both optical and electrical) on the HST-3000 Ethernet SIM enable technicians to gain access to circuits under test in order to perform in-service monitoring in both directions. Not only does this simplify sectionalization of the network, it also allows for the analysis of live customer traffic without the use of a splitter.

Encapsulation Support

VLAN Protocol Support

VLAN tag manipulation allows for the generation of an Ethernet traffic stream with a specific VLAN ID (as per specification IEEE 802.1Q) and VLAN user priority (as per specification IEEE 802.1p). This enables technicians to verify the correct transmission and prioritization of the stream through the network. In addition, VLAN filtering allows technicians to isolate a specific VLAN stream and compare its performance with the total performance of the link. VLAN protocol support is available for both Layer 2, 3, and 4 traffic testing.

VLAN Stacking (Q-in-Q) Support

Service providers are deploying Q-in-Q (VLAN Stacking as per specification IEEE 802.1ad) as a simple cost effective solution to support their customers who utilize VLANs. Q-in-Q is a scalable Layer 2 based solution that isolates and prioritizes customer traffic in the core network while providing up to two times 4096 VLANs in the network. A challenge introduced to service providers by Q-in-Q technology is to ensure that the data reaches its intended destination and the customers' VLAN tags are intact. In order to test Q-in-Q in the networks, the technicians can use the HST-3000 Ethernet SIM to configure up to two VLAN IDs and their priorities. In addition, the test set will filter on tags and monitor Q-in-Q traffic for basic troubleshooting.

MPLS Support

Service providers are deploying Multi Protocol Label Switching (MPLS) in their networks to transport large volumes of data quickly through their core and to provide faster re-route in cases of congestion or path failure. MPLS-enabled switches and routers remove and insert labels to IP packets as they move through the network. Technicians require test equipment that can support maintaining an MPLS network. Using the HST-3000 Ethernet SIM, the technician can perform MPLS throughput testing, monitoring and routing verification. The test set gives the technician the ability to transmit packets with two MPLS labels based on the network configuration and receive up to two MPLS labels for traffic analysis.

Figure 4 VLAN Stacking in the network

C Ethernet Measurements HOME->IPv6 OPTIC Press a number or use arrow keys and then OK Terminate 1G Optical Ethernet IPv6 C - 1G IPv6 Monitor / Thru Monitor 16 Optical Ethernet IPv6 C - 100M IPv6 Terminate Terminate 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor Monitor 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor Monitor 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor Monitor 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor Monitor 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor Monitor 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor Monitor 100M Optical Ethernet IPv6 C - 100M IPv6 Monitor C - 100M

Figure 5 HST-3000 IPv6 Applications

∜ Summary Settings		Ý 🔒
01 - Test	Layer 4 Traffic	-
02 - Auto Negotiation	On	
03 - Encapsulation	None	
04 - Load(%)	100	
05 - Source Type	DHCP	
06 - Destination IP	192.168.0.2	
07 - Packet Length	48	
08 - Traffic Mode	UDP	
09 - Source Port	3000	1
10 - Destination Port	80	
Settings	IN Save	

Figure 6 HST-3000 Layer 4 Application Setup

Multiple Streams Option

Many service providers are beginning to deploy different classes of service in order to offer tiered services to customers or to prioritize traffic and effectively manage triple-play networks. This leads to new challenges where the latency and loss may be acceptable for regular traffic, but the higher priority traffic does not meet its required SLA.

In order to test these new networks, technicians can use the Multiple Streams option at Layers 2, 3 and 4 for the HST-3000 Ethernet SIM to oversubscribe the network elements and determine if the various SLAs are met. This is accomplished by using multiple different traffic streams, with differing encapsulation and priorities schemes, and by sending more traffic through the network than the network can handle. The network elements should drop the lower priority traffic, and allow higher priority traffic to pass to the far end at the expense of the lower priority traffic.

IPv6 Option

IPv6 was developed as a way to address the limitations of IPv4: insufficient address space for everything over IP, complexity of address resolution, lack of data security, and lack of adequate QoS measurement.

IPv6 features an auto-configuration facility, defined in RFC2461, which greatly simplifies address configuration. In "stateless" mode, an IPv6 host will automatically configure itself with a unique link-local address, which enables it to communicate locally on its own subnet. For communication over the Internet, the host is provided with a global address by a local router. Both transactions are completely transparent to the user resulting in a truly plug-and-play environment. IPv6 also supports manual address configuration and DHCPv6 using a "stateful" address configuration in cases where network administrators require tighter control over IP address allocation. The IPv6 option on the HST-3000 Ethernet SIM supports all three configuration schemes for IPv6 traffic testing for 10/100/GigE networks.

The IPv6 option also features Monitor/Thru mode testing in which statistics are gathered and analyzed on live IPv4 and IPv6 traffic by the HST-3000.

Layer 4 (TCP/UDP) Option

Providers are looking for ways to improve their managed services to meet the ever growing carrier-grade Ethernet requirements. Along with their capability to deliver the Layer 3 services, carriers need to be able to measure Layer 4 end-to-end performance and ensure that SLAs are being met. Providers require a field portable test set that that will support end-to-end testing at Layer 2 and through Layer 4. The new Layer 4 option gives technicians the added ability to measure throughput, loss and delay performance statistics. With this option, technicians can configure valid TCP/UDP source and destination ports, and payloads up to full line rate or generate multiple streams with Layer 4 traffic to allow for prioritization on source and destination ports. Technicians can also perform Cable diagnostics and RFC2544 test with Layer 4 traffic application.

VoIP Option

The HST-3000 with the VoIP option can validate VoIP service connectivity, feature availability, and voice quality. In addition, it provides a comprehensive set of features, including signaling, IP Ping, packet statistic, and Traceroute analysis in order to identify, diagnose, and sectionalize VoIP network and equipment problems.

IP Video Option

The HST-3000 IP Video option is a video test suite specifically designed to meet the needs of the field technicians who are responsible for the provisioning or installation of IP Video services that carry video program content. Test access includes the 2-wire ADSL interface or the Ethernet 10/100 interface at the DSL modem or FTTx residential gateway. The test suite includes set top box (STB) emulation with signaling support for broadcast video (IGMP) and VOD (RTSP). Video transport stream analysis is provided as well as video QoS measurements, including packet jitter, packet loss, IGMP latency, and program clock reference (PCR) jitter analysis.

Flexible and Rugged Design

The HST-3000 incorporates a rugged, weather-resistant design and long battery life that are ideally suited for use in the field. Its modularity allows for field upgrades to support new testing requirements. Standard Ethernet, USB, and serial connections offer flexibility to easily download software and offload captured test data.

Easily configurable, the HST-3000 can be used by different technicians with different responsibilities to perform a wide number of tests. The HST-3000 is easily upgradeable with technologies and advanced options that support the changing needs of service installers.

7

Specifications

Test Interfaces

Optical Ethernet/IP 100/1000 Mb/s Dual SFP ports **Electrical Ethernet/IP**

10/100/1000 Mb/s Dual RJ-45 ports Test Modes

Terminate

Monitor/Thru (bi-directional monitor)

Ethernet (Layer 2) Specifications		
Duplex modes	Full, half	
Flow control	Supported	
Traffic generation	Constant, ramp, bursty	
Pavload	ATP RERT	

Traffic generation	Constant, ramp, bursty
Payload	ATP, BERT
Frame length	64-1526 bytes, user-defined,
	undersized, jumbo, random
MAC addressing	Configurable source and
	destination MAC addresses
Frame format	802.3 or DIX
ARP mode	Enable, disable
VLAN settings	ID, priority
Q-in-Q settings	TPID, customer VLAN ID,
	customer VLAN priority,
	service provider VLAN ID,
	service provider priority, and
	service provider, DEI bits
MPLS settings	Label, priority, TTL,
	MPLS Ethertype (Unicast or Multicast),
	# MPLS Labels (1 or 2)
Bit error testing patt	erns PRBS (2 ²³ -1, 2 ³¹ -1,
	and inverted selections),
	all 1s, all 0s, user-defined
Framed pattern test	per NCITS TR-25:1999 CRPAT,
	CJPAT, CSPAT
Traffic filtering	MAC source address,
	MAC destination address,
	Frame type/length, VLAN ID,
	VLAN Priority, SVLAN ID,
	SVLAN Priority, MPLS Label, MPLS Priority

IP Version 4 (Layer 3) Specifications

Traffic generation	Constant, ramp, bursty
Data mode	IPoE, PPPoE
IP addressing	Configurable source and
	destination IP addresses
	TOS/DSCF
Traffic filtering	Source IP address,
	destination IP address
	TOS/DSCP, VLAN ID
	VLAN Priority, SVLAN ID
	SVLAN Priority, MPLS Label, MPLS Priority
IP Version 6 (L	ayer 3) Specifications

Traffic generation	Constant, ramp, bursty
IP addressing	Stateless autoconfiguration,
	Stateful autoconfiguration, Manua

Traffic filtering	Source IP addresses,
	Source prefix, Destination IP,
	Destination Prefix Traffic Class Type,
	VLAN ID, VLAN Priority,
	SVLAN ID, SVLAN Priority
TCP/UDP (Layer 4	l) Specifications
Traffic mode	TCP, UDP
Port addressing	Source, Destination
Multiple Streams	Specifications
Number of streams	8
Stream modes	Laver 2, Laver 3, Laver 4
Encapsulations	VLAN ID, VLAN Priority,
	SVLAN ID, SVLAN Priority
Cable Testing Sp	cifications
Ontical	Power measurement
optical	SEP Vendor Name
CAT-5 cable	Link sneed link status
CAT 5 Cabic	crossover/straight
	distance to fault nin manning
	nair length polarity skew
Power over Ethernet	Indicates if the nower supply
	responds to Class 1 nower requests
Key Results	
Link status	Optical power measurement
Lint Status	Link active
	Frame detected
	Sync obtained
Configuration status	Auto-negotiation link
	nfiguration ACK, Auto-negotiation link
a	dvertisement status, DHCP lease time,
Des	tination MAC address when using ARP
Link status	Bandwidth utilization
	Frame rate
	Rx/Tx L1, L2, L3, L4 Mb/s
	Round trip delay
	Service disruption time
Link counts	Total received and transmitted frames.
paus	e frames. VLAN frames, unicast frames.
puus	multicast frames, broadcast frames,
	frame length (bins). Errored counts.
	FCS errored frames, runts, jabbers,
	undersized frames, 00S frames.
	lost frames. IP checksum errors.
	ATP payload error
Conformance with REC2	544 Throughput test
comonnance with hirez.	l atoncy test
	Frame loss test
	Rack-to-hack frame tect
	Dack to Dack Hame test

Physical Specifications

General Specif	ications
W	ith backlight (readable in direct sunlight)
Display 3	.8" diagonal, 1/4 VGA, Color Active Matrix
Storage humidity	10% to 95% relative humidity
Operating humidity	10% to 80% relative humidity
Charging time	7 hrs. from full discharge to full charge
Battery life	10 hrs. typical usage
Storage temperature	-40° F to 150° F (-40° C to 65.5° C)
Operating temperatur	re 22° F to 122° F (5.5° C to 50° C)
Weight (with battery)	2.7 lbs. (1.23 kg)
Size (h x w x d)	9.5 x 4.5 x 2.75 in. (241 x 114 x 70 mm)

Ruggedness	Survives 3 feet (91 cm) drop
	to concrete on all side
Water-resistant	Splashproof (may be used in heavy rain)
Language	English, German, French, Spanish
	Italian, Chinese, Turkish
Keypad	Typical 12-button keyboard

HST3000-MSTV	Microsoft IPTV Video Analysis
	Software Option
HST3000-OPTETH	Optical Ethernet Software Option
IST3000-PCMSIG	Signalling (PCM) Software Option
IST3000-PCMTIMS	TIMS (PCM) Software Option
IST3000-PRI	ISDN PRI Software Option
	(NC Standard)
IST3000-PS	Pulse Shape Software Option
HST3000-REMOP	Remote Operation
	Software Option
IST3000-RFL	RFL Software Option
IST3000-SCRIPT	Scripted Test Software Option
IST3000-SPE	Spectral Noise Software Option
HST3000-ST	Basic Rate ISDN S/T (ANSI)
	Software Option
HST3000-T1DDS	DDS-T1 Software Option
IST3000-TCPUDP	TCP/UDP Software Option
IST3000-TDR	TDR Software Option
IST3000-TxIMP	Transmission Impairments
	Software Option
IST3000-UNISTIM	VolP Signaling Call Controls for
	UNISTIM Software Option
IST3000-VT100	VT100 Emulation Software Option
ST3000-WBTONES	WB TIMS Software Option
IST3000S-H.323	H. 323 VolP Signaling
5150005 111525	Software Option
HST3000S-IP	Advanced IP Suite –
1515000511	PING and Through Mode Support
	Software Ontion
IST3000S-IP-Video	IP Video Analysis Software Option
	SCCP MGCP VolP Signaling
	VolP Moan Opinion Score
13130003-1003	Voir Mean Opinion Score
13130003-3CCP	SCCP VOIP Signaling
	Software Option
12130002-SIP	SIP VOIP Signaling
	Software Option
12130002-VM02	Video MUS Analysis
	Software Option
4513000S-V0IP	VoIP Software Analysis
	Software Option
HST3000S-WEB	Web Browser Software Option

HST3000-CUVDSL-IK	VDSL and Copper
	with Ikanos Chipset SIM
HST3000-CUVDSL-INF	VDSL and Copper
	with Infineon Aware Chipset SIM
HST3000-DC	Datacom SIM
HST3000-E1	E1 SIM
HST3000-E1-DC	E1/Datacom SIM
HST3000-ETH	10/100/1000 Ethernet SIM
HST-GSH	G.SHDSL SIM
HST3000-GSHCE	2-Wire G.SHDSL SIM
HST3000-T1	Dual TX/RX Bantam
	T1 Interface and T1 SIM
HST3000-T3	Dual TX/RX Bantam T1 Interface,
	and Dual RX/Single TX BNC
	DS3 Interface/and DS3 SIM
HST3000-VDSL-CNXT	VDSL with
	Connexant Chipset SIM
HST-3000-VDSL-CNXT-WB2	VDSL and Copper
	(up to 30 MHz)
	with Connexant Chipset SIM
HST3000-VDSL-IK	VDSL with
	Ikanos Chipset SIM
HST-3000-VDSL-IK-WB2	VDSL and Copper
	(up to 30 MHz)
	with Ikanos Chipset SIM
HST3000-VDSL-INF	VDSL with
	Infineon Aware Chipset SIM
HST-3000-VDSL-INF-WB2	VDSL and Copper
	(up to 30 MHz)
	with Infineon Aware Chipset SIM
HST3000-WB2	Wide Band 2 (up to 30 MHz)
	Copper Test SIM
Software Options	
HST3000-BLUETOOTH	Bluetooth Wireless
	Software Option
HST3000-DSL2	ADSL2 and ADSL2+
	Software Option
HST3000-FR	Frame Relay Software Option
HST3000-FTP	FTP Software Option
HST3000-IPV6	IPv6 Software Option
HST3000-MPLS	MPLS Software Option
HST3000-MSTR	Multiple Streams Software Option

All statements, technical information and recommendations related to the products herein are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. The user assumes all risks and liability whatsoever in connection with the use of a product or its application. JDSU reserves the right to change at any time without notice the design, specifications, function, fit or form of its products described herein, including withdrawal at any time of a product offered for sale herein. JDSU makes no representations that the products herein are free from any intellectual property claims of others. Please contact JDSU for more information. JDSU and the JDSU logo are trademarks of JDS Uniphase Corporation. Other trademarks are the property of their respective holders. ©2007 JDS Uniphase Corporation. All rights reserved. 30149220 002 1207 HST3000ETHSIM.DS.ACC.TM.AE

Ordering Inforr	nation	
HST3000-NG	HST-3000 Mainframe	
	without Copper (Color)	
HST3000-NG-BW	HST-3000 Mainframe	
	without Copper Testing (B&W)	
HST3000C-NG	HST-3000 Copper Mainframe	
	(Color)	
HST3000C-NG-BW	HST-3000 Copper Mainframe	
	(B&W)	
Aveilable CIMC ((Medules)	
Available Silvis ((Modules)	
	4-WIRE LOCAL LOOP SIM	
HS13000-AKZA-11	ASUL2+ II (AIU-K, Annex A) SIM	
HS13000-AK2A	ADSL1/2/2+	
	(AIU-R, Annex A) SIM	
HST3000-AR2B	ADSL1/2/2+	
	(ATU-R, Annex B) SIM	
HST3000-AR2B-TI	ADSL2+TI	
	(ATU-R, Annex B) SIM	
HST3000-ARB	Annex B ATU-R SIM	
HST3000-ARCA	ATU-R/C Dual Mode SIM,	
	AoPOTS SIM	
HST3000-ARCB	ATU-R/C Dual Mode SIM,	
	AoISDN SIM	
HST3000-ARCE	ADSL (ATU-R) SIM	
HST3000-BLK	Blank SIM	
HST-BRA	ETSI (Euro) ISDN BRA SIM	
HST3000-BRI	ISDN BRI SIM	
HST3000-CAR	Copper (ATU-R) SIM	
HST3000-CAR2A	ADSL1/2/2+ with Conn	
	(ATU-R Annex A) SIM	
HST3000-CAR2A-TI	Copper ADSI 2+ TI	
	(ATULR Anney A) SIM	
	$\Delta DSI 1/2/2 + with Coppor$	
11515000-CAN2D	(ATIL P. Appor P) SIM	
	(ATU-R, AIIIIEX D) SIM	
H313000-CAN2D-11	(ATU D. Appey P) SIM	
	(ATU-R, AIIIIEX D) SIM	
	Alliex B Copper/Allo-K Sim	
HS13000-CARCA	Copper and ATU-R/C	
	Dual Mode SIM, AOPUIS	
H213000-CARCB	Copper and AIU-R/C	
	Dual Mode SIM, AoISDN	
HS13000-CARCE	Copper and AIU-R (Annex A) SIM,	
	CE Marked	
HST3000-CSHHV	G.SHDSL, 380V SPAN, DVOM SIM	
HST3000-CSH4	Copper, 4-Wire G.SHDSL	
	(STU-R/C, Annex A/B) SIM	
HST3000-CSHCE	G.SHDSL and Copper SIM	
HST3000-CT1	T1 and Copper SIM	
HST3000-CU	Dual T/R/G Interface to Copper Test SIM	
HST3000-CUCE	Copper only SIM, CE Marked SIM	
HST3000-CUVDSL-CNX	T VDSL and Copper	
	with Connexant Chipset SIM	

Test & Measurement Regional Sales

LATIN AMERICA	ASIA PACIFIC	EMEA
TEL: +55 11 5503 3800	TEL: +852 2892 0990	TEL: +49 7121 86 2222
FAX: +55 11 5505 1598	FAX: +852 2892 0770	FAX: +49 7121 86 1222

NORTH AMERICA TEL: 1 866 228 3762 FAX: +1 301 353 9216